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Abstract

Multiple effects may lead to significant differences between the relaxation rates of zero-quantum coherences (ZQC) and double-quan-
tum coherences (DQC) generated between a pair of nuclei in solution. These include the interference between the anisotropic chemical
shifts of the two nuclei participating in formation of the ZQC or DQC, the individual dipolar interactions of each of the two nuclei with
the same proton, and the slow modulation of the isotropic chemical shifts of the two nuclei due to conformational exchange. Motional
events that occur on a timescale much faster than the rotational correlation time (ps–ns) influence the first two effects, while the third
results from processes that occur on a far slower timescale (ls–ms). An analysis of the differential relaxation of ZQC and DQC is thus
informative about dynamics on the fast as well as the slow timescales. We present here an experiment that probes the differential relax-
ation of ZQC and DQC involving methyl groups in protein sidechains as an extension to our recently proposed experiments for the pro-
tein backbone. We have applied the methodology to 15N, 13C-labeled ubiquitin and used a detailed analysis of the measured relaxation
rates using a simple single-axis diffusion model to probe the motional restriction of the CnextHnext bond vector where Cnext is the carbon
that is directly bonded to a sidechain methyl carbon (Cmethyl). Comparison of the present results with the motional restriction of the
CnextCmethyl bond ðS2

axisÞ reveals that the single-axis diffusion model, while valid in the fringes of the protein and for shorter chain amino
acids, proves inadequate in the central protein core for long chain, asymmetrically branched amino acids where more complex motional
models are necessary, as is the inclusion of the possibility of correlation between multiple motional modes. In addition, the present mea-
surements report on the modulation of isotropic chemical shifts due to motion on the ls–ms timescale. Three Leu residues (8, 50, and 56)
are found to display these effects. These residues lie in regions where chemical shift modulation had been detected previously both in the
backbone and sidechain regions of ubiquitin.
� 2006 Published by Elsevier Inc.
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1. Introduction

In the past few years, measurement of the interference or
‘‘cross-correlation’’ between two second rank tensorial
interactions on the relaxation properties of various compo-
nents of the density operator in scalar-coupled spin systems
has provided a large amount of information inaccessible
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from conventional R1, R2 and steady-state NOE measure-
ments [1,2]. These measurements have revealed the exis-
tence of anisotropic motion in the protein backbone [3]
and have allowed the estimation of hitherto inaccessible
backbone dihedral angles [4–7]. They have also provided
the means to determine the chemical shift tensor for back-
bone amide 15N [8–11], 13Ca [12], and carbonyl 13C 0 [13,14]
nuclei in solution.

Recent studies have shown that in addition to
information on motion on the fast, ps–ns timescale,
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cross-correlated relaxation provides information on the
slow, ls–ms timescale. Motion occurring on a timescale
slower than the rotational correlation time, sc, which
includes conformational exchange, manifests itself in a
fashion similar to cross-correlated relaxation [15–17] in
zero and double quantum coherences. These motions mod-
ulate ‘‘isotropic’’ spin-interactions like the scalar couplings
[18] and isotropic chemical shifts [15,16] while the aniso-
tropic interactions such as dipolar couplings and chemical
shift anisotropy (CSA) are already motionally averaged by
processes occurring on a timescale faster than sc. Unusually
large differences in the relaxation rates between zero-quan-
tum coherences (ZQC) and double-quantum coherences
(DQC) generated between backbone amide 15N and 1HN

[16] nuclei and those between 13Ca and sidechain 13Cb

nuclei [17] were shown to be the result the cross-correlated
modulation of the isotropic chemical shifts by exchange
processes on the slow timescale. These effects were shown
to be similar to those occurring as a result of cross-correla-
tion between the CSAs of the two nuclei (vide infra) [16]
that participate in the formation of the ZQC or DQC.
However, the difference in timescales of the processes that
modulate the two effects is evident from the fact that the
effects of the cross-correlation between the isotropic chem-
ical shifts modulated by slow dynamics can be refocused in
a CPMG-type experiment [19,20]. Modulation of isotropic
chemical shifts may occur due to a variety of reasons
including variations in local dihedral angles, the formation
or disruption of hydrogen bonds or rearrangement in the
positioning of aromatic rings. These effects may be non-
uniform for a set of nuclei and may provide information
about correlated motion over multiple bonds [21], informa-
tion that is inaccessible by conventional R1q-type measure-
ments [22].

Thus a careful analysis of the differential relaxation
between ZQC and DQC has the potential to provide infor-
mation about fast, local dynamics occurring on the ps–ns
timescale as well as conformational exchange on the ls–
ms timescale. So far, there has been some effort on mea-
surement of the relaxation properties of ZQC and DQC
in proteins. These studies have been focused on the protein
backbone [16,21], on sidechain Ca and Cb nuclei [17,23]
and on methyl groups [24,25]. There was a clear need to
extend these studies to other sidechain positions in uni-
formly 13C, 15N-labeled proteins. We present here a new
approach that measures the relaxation behavior of ZQC
and DQC formed between a sidechain methyl 13C (Cmethyl)
and the 13C directly bonded to it (Cnext) in uniformly 15N,
13C-labeled proteins. We further look at the feasibility of
extracting information on the motional rigidity of the
CnextHnext bond (Hnext is the proton that is directly bonded
to Cnext) through a detailed analysis of the rates and the
inclusion of prior information about the motional rigidity
of the CnextCmethyl bond ðS2

axisÞ [26]. Since the CnextCmethyl

and CnextHnext bonds are almost orthogonal, detection of
differences in the motional rigidity of these two bonds
should in principle provide clues into the presence of aniso-
tropic motion in protein sidechains as indicated by Yang
et al. [27] and analogous to those seen in the backbone
regions of proteins [3]. In addition, the detection of very
large differences between the ZQC and DQC relaxation
rates that cannot be explained by fast, ps–ns dynamics
alone are interpreted as the result of slow, correlated mod-
ulation of isotropic chemical shifts on the ls–ms timescale.

2. Theory

The imaginary part of the ZQ (qZQ) and DQ (qDQ)
components of the density operator (also referred to as
the y-component or ZQy or DQy terms) in a scalar-coupled
IS system may be expressed in the following way:

qZQ ¼
1

2
½2IySx � 2IxSy � ¼

1

2i
½IþS� � I�Sþ�; ð1aÞ

qDQ ¼
1

2
½2IySx þ 2IxSy � ¼

1

2i
½IþSþ � I�S��; ð1bÞ

where qDQ contains the ± 2 quantum terms. The evolution
of qZQ and qDQ over a period sM (neglecting chemical shift
evolution and including only relevant terms of the density
operator, i.e., those terms that lead to observable signal
at the end of the experiment) is given by:

qZQðsMÞ ¼
Ym

l¼1

cosðpJ l
ZQsMÞe�CZQsMqZQð0Þ þ � � � ; ð2aÞ

qDQðsMÞ ¼
Ym

l¼1

cosðpJ l
DQsMÞe�CDQsMqDQð0Þ þ � � � ð2bÞ

CZQ (CDQ) is the relaxation rate of the ZQ (DQ) term and
the corresponding effective scalar coupling constant with
the lth passive nucleus (Xl) is represented by J l

ZQðJ l
DQÞ.

We have assumed that the I and S nuclei are coupled with
m passive spins and J l

ZQ and J l
DQ are given by

J l
ZQ;DQ ¼ aJðI ;X lÞ � bJðS;X lÞ; ð3Þ

where the ‘‘�’’ sign holds for the ZQC and the ‘‘+’’ sign for
DQC. The aJ (I,Xl) and bJ (S,Xl) represent the a/b-bond
scalar couplings (a,b = 1,2,3) with a passive nucleus Xl.
In the case where the J l

ZQ;DQ are dominated by large one-
bond passive couplings with the I nucleus (a = 1, b = 2),
Eq. (2) can to an excellent approximation, be written as
(as in Eq. (2), only relevant terms are shown):

qZQðsMÞ ¼ cosðpJ ZQsMÞme�CZQsMqZQð0Þ þ � � � ; ð4aÞ
qDQðsMÞ ¼ cosðpJ DQsMÞme�CDQsMqDQð0Þ þ � � � ; ð4bÞ

where J ZQ;DQ ¼ 1JðI ;X lÞ � 2JðS;X lÞ. The difference be-
tween JDQ and JZQ for a particular spin pair depends on
multiple sidechain dihedral angles. However, in general,
this dependence is rather complicated and the relationship
with respect to a particular dihedral angle is difficult to
determine for most amino-acid types using a simple analy-
sis of JZQ,DQ values (to analyze this accurately, one has to
also take into account the small 2 and 3 bond couplings,
i.e., consider Eqs. (2) and (3) instead of Eq. (4)).
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In the general case, CZQ „ CDQ and the difference (DC) is
given by (neglecting the contributions of the non-zero fre-
quencies of the spectral density function, i.e., considering
only J (0) terms)

DC ¼ CDQ � CZQ

¼ 8

9
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0

2
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� � X
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33
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The first term in Eq. (5) ð
P

i;jR
CC
ij Þ results from the cross-

correlation between the fully asymmetric CSA tensors of
the two spins I and S. The rI;S

jj ðr11 6 r22 6 r33Þ represent
the principal components of the two CSA tensors and the
angle hij denotes the projection of the ith component of
the CSA tensor of spin I on the jth component of the
CSA tensor of spin S; S2

ij is the Lipari–Szabo order-param-
eter for the interaction. The second term ð

P
kRDD

k Þ in Eq.
(5) results from the cross-correlation between the dipolar
interactions of each spin I and S with the same proton
Hk at a distance rIHk from spin I and rSHk from spin S,
S2

k;cross is the cross-correlation order parameter (vide infra)
for the interaction. The third term (RXR) is due to the
cross-relaxation between I and S (S2

IS is the order parameter
describing the motional restriction of the IS internuclear
vector and assuming that spins I and S constitute a
homonuclear spin system in the Goldman [28] formalism,
i.e., xI � xS; rIS is the IS bond length). Dipole–dipole
cross-correlations involving heteronuclear spins only are
sufficiently small to be neglected in the present analysis.
sc is the global rotational correlation time (assuming
an isotropic rotational diffusion tensor) and P 2ðcos hÞ ¼
1
2
ð3 cos2 h� 1Þ. All other terms have their usual meaning.

The first three terms of Eq. (5) are modulated by the rota-
tional reorientation and represent relaxation in the tradi-
tional Redfield sense. However, the fourth term (Rex)
appears as a result of two-state exchange with a time con-
stant 1/sex between specific conformational states A and B

with relative populations pA and pB = 1 � pA, respectively.
The difference in resonance frequencies between the two
conformational states for spins I and S are DxI and DxS,
respectively [16]. Eq. (5) has been derived using a second-
order perturbation approach (like Redfield theory) and is

valid for sc�sex� sr, where sr ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
DxI DxS

p characterizes

an effective frequency (chemical shift) scale. In practice,
this puts sex in the ls–ms regime [21]. On this timescale
(corresponding to fast exchange on the multiple quantum
frequency scale) the linear dependence on sex may result
in very large differences between the relaxation rates of
ZQC and DQC in the presence of conformational ex-
change. Further, it is implicitly assumed that the sM period
(in Eq. (4)) is long compared to the exchange time sex, i.e.,
sex� sM for all sM values, otherwise the apparent Rex val-
ue estimated from DC using Eqs. (4) and (5) would have an
explicit sM dependence. This is not expected to be an issue
in the present study. In ubiquitin, sex values have been
found to vary between 0.2 and 0.4 ms [29]. These measure-
ments though made from backbone experiments, are never-
theless expected to be valid in the present context since
slow motions tend to be less local and sidechain sex values
are not expected to be significantly different.

Thus in order to measure JZQ,DQ and CZQ,DQ two sets of
experiments are required—one set that measures the evolu-
tion of the ZQC and a second that measures the time-evo-
lution of the DQC. The signal intensities in the two
experiments as a function of a relaxation delay sM (assum-
ing sex� sM for all sM values) are given by:

SZQðsMÞ ¼ AZQ cosðpJ ZQsMÞm e�CZQsM ; ð6aÞ
SDQðsMÞ ¼ ADQ cosðpJ DQsMÞm e�CDQsM ; ð6bÞ

where AZQ and ADQ are constants. Note, in writing Eqs. (5)
and (6) we have assumed that the ZQC and DQC decays
may be represented by single exponential functions, i.e.,
the secular approximation is valid. The validity of the sec-
ular approximation has been discussed in detail in the
appendix (Appendix A).

3. Materials and methods

3.1. Experimental design

The pulse sequences utilized to measure the relaxation
rates of ZQC and DQC involving a methyl sidechain 13C
nucleus (13Cmethyl) and the 13C nucleus immediately pre-
ceding it (13Cnext) in uniformly 15N, 13C-labeled proteins
are depicted in Fig. 1. The sequences are based on selec-
tive HSQC-type experiments common in the literature, so
only the salient features are described. Coherences evolv-
ing as ZQ or DQ during sM were selected by simulta-
neously cycling the phases /2 and /3 [17]. 13C–13C
scalar couplings are active during sM since the selective
180� pulse (indicated by the filled gray sine-bell in
Fig. 1) applied at the center of the sM period inverts the
entire aliphatic region. Use of pulsed field gradients for
coherence selection instead of the elaborate phase-cycle
utilized here is also plausible. However, in that case,
simultaneous selection of both the +2 and �2 quantum
coherences would not be possible, leading to a twofold
decrease in signal intensity in the DQ-type experiment.
An additional 16-step phase cycling (on /3 and /rec)
was used in the sequence to detect the ZQC. This was
required to eliminate two-spin order (2IzSz) that has sim-
ilar transformation properties as the ZQC. These spurious
terms may be generated by inaccuracies in pulses and
delays prior to the relaxation period sM.
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Fig. 1. Pulse sequences used to measure the decay rates of DQC (CDQ) and ZQC (CZQ). 90� and 180� pulses are represented by narrow and thick lines,
respectively. Shaped pulses are shown as sine-bells. The dark solid sine-bells represent methyl-selective 1.2 ms IBURP2 [46] pulses centered at 20 ppm, the
light solid sine-bells represent 400 ls REBURP [46] pulses centered at 35 ppm and the hatched sine-bell represents an off-resonance 400 ls REBURP pulse
centered at 35 ppm. The 1H/13C carriers are initially set at 1.0 ppm/20 ppm moved to 2.5 ppm/35 ppm at point ‘a’ and moved back to 1.0 ppm/20 ppm at
point ‘b.’ The delays s = 1/4JCH = 1.9 ms, sCC = 1/4JCC = 7.1 ms, and T = 7.0 ms. The following phase cycling is used /1 = {x,�x},
/2 = {4(x),4 (y),4 (�x),4 (�y)}, /4 = {x,y,�x,�y}, /5 = {x,x,�x,�x}, /6 = {y,y,�y,�y} and /7 = {x}. For the DQ datasets /3 = {4(x), 4 (y),4 (�x),
4 (�y)} and /rec = {x,�x,�x,x,�x,x,x�x,x,�x,x,x,�x,x,x,�x}. For the ZQ datasets /3 = {4(x),4 (y), 4 (�x),4 (�y), 4 (�x),4 (�y), 4 (x),4 (y)} and
/rec = {4(x,�x,�x,x),4 (�x,x,x�x)}. All other pulses are applied along the +x direction. The gradients g1 (1 ms, 5 G/cm), g2 (450 ls, 10 G/cm), g3 (1.5 ms/
13 G/cm), g4 (800 ls, 10 G/cm), g5 (1 ms, 13 G/cm), g6 (450 ls, 2 G/cm), g7 (500 ls, 11 G/cm), and g8 (250 ls, 13 G/cm). The sign of the gradient pulse g5 is
inverted on alternate FIDs to obtain hypercomplex data. Decoupling was achieved during acquisition using a GARP sequence with a 2.9 kHz field.
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The carrier was initially placed at 1.0 ppm for the 1H
channel and 20 ppm for the 13C channel, i.e., at the center
of the methyl region and shifted to 2.5 ppm (1H) and
35.0 ppm (13C) for efficient excitation of the entire aliphatic
region at point ‘a.’ The carrier was shifted back to the methyl
region at point ‘b’ for constant-time evolution of 13C single
quantum coherence and subsequent back transfer and detec-
tion utilizing the back-end of a gradient selected, sensitivity-
enhanced HSQC [30]. Eq. (4) gives the time-evolution of the
relevant components of the density operator during sM.

To be formally accurate, the relevant components of the
density operator at the start and end of the sM period are giv-
en by qZQz

/ ½IþS� � I�Sþ�Hz or qDQz
/ ½IþS� � I�Sþ�Hz in

the ZQ-type or DQ-type experiments respectively. During
sM, an oscillation takes place between qZQz

and qZQ (given
by Eq. (1a)) in the ZQ experiment and a corresponding oscil-
lation between qDQz

and qDQ (Eq. (1b)) occurs in the DQ
experiment. Thus, the actual relaxation rates measured are
the time-averaged [31] relaxation rates for qZQz

and qZQ in
the case of CZQ and qDQz

and qDQ for CDQ. This averaging
may be incomplete for shorter sM values and more elaborate
expressions that take this behavior into account in similar
cases have been suggested [31]. Simulations show that in
the present case, the errors in CZQ,DQ resulting from the
use of Eq. (6) as opposed to more exact expressions are far
smaller than the experimental precision.

3.2. Data processing and analysis

All experiments were performed on a Varian Inova
NMR spectrometer operating at 600 MHz and equipped
with a triple-resonance HCN probe capable of applying
pulsed field gradients along the z-axis. The total number
of transients per t1 point was 64 and a recycle delay of
1.5 s was used in all cases. The values of sM used were
0.5 (·2), 4.0, 7.0, 14.3, 16.0, 22.0, 28.0 (·2), 38.0, 42.9,
44.0, 50.0 (·2), 58.0 and 71.5 ms. All experiments were
performed at 30 �C on a 1.0 mM sample of 15N, 13C
labled human ubiquitin in 50 mM sodium acetate, 90%
H2O, 10% D2O and 0.1% NaN3, pH 5.0. The sample con-
ditions were consistent with those used previously [26] to
justify the use of the S2

axis obtained in that study in the
present analysis. The data were processed using the
NMRPIPE [32] suite of software. Mirroring was used in
the indirect dimension followed by apodization using a
squared cosine-bell function and zero-filling to double
the data size prior to Fourier transformation. The data
in the direct dimension were also apodized using a
squared cosine-bell and zero-filled to double the size prior
to Fourier transformation. The data from the ZQ and
DQ datasets were fit to Eq. (6) using in-house software
that utilized the ODRPACK [33] library. In the initial
analysis, data points for all 17 sM values were fit to Eq.
(6) to obtain accurate values of JZQ,DQ which are essen-
tially determined by the zeroes of Eq. (6). In the present
case the JZQ,DQ were dominated by the one-bond 1JCC

couplings (Cnext and its m directly bonded 13C,
m = 0,1,2). The values of m depend on the amino-acid
type and the relevant coherences were grouped into three
distinct classes (I, II, and III) as shown in Table 1. In the
final analysis, the JZQ,DQ determined from the initial anal-
ysis were held fixed and data for the first 10 sM values



Table 1
Classes of DQ/ZQ resonances based on number of one-bond passive
couplings—see Eqs. (4) and (6)

Class m Residue type I spin S spin Dominant 1JCC

I 0 Ala 13Ca 13Cb None
II 1 Thr 13Cb 13Cc 13Ca–13Cb

II 1 Ile 13Cc1 13Cd1 13Cb–13Cc1

III 2 Ile 13Cb 13Cc2 13Ca–13Cb,13Cc1–13Cb

III 2 Leu 13Cc 13Cd1 13Cb–13Cc,13Cd2–13Cc

III 2 Leu 13Cc 13Cd2 13Cb–13Cc,13Cd1–13Cc

III 2 Val 13Cb 13Cc1 13Ca–13Cb,13Cc2–13Cb

III 2 Val 13Cb 13Cc2 13Ca–13Cb,13Cc1–13Cb
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(upto and including sM = 28 ms) were fit to Eq. (6) to
obtain the CZQ,DQ. This two-step procedure is necessary,
in general, to prevent any multi-exponential behavior in
the ZQ/DQ decay at longer sM (Appendix A) values from
affecting the rates [17] (The rates determined in ubiquitin
remained the same within error even if the entire curve
including all sM values was used, implying that non-secu-
lar effects may not be that important in small proteins in
the present context. We however, chose to employ the
two-step procedure for generality and consistency with
Fig. 2. (A) Representative double-quantum (red) and zero-quantum (black) da
shown in Fig. 1. Half the number of contours have been drawn in the case of th
of DQ datasets for coherences of various classes (see Table 1): class I (black—
Cc–Cd1). Circles depict the experimental data points and the calculated fits to E
intensity at sM = 0. Similar fits are obtained for the corresponding ZQ datasets
the presence of exchange contributions as shown by the more rapid decay of the
previous work [17].) This two-step procedure was not nec-
essary for Ala residues for which m = 0 in Eq. (6) and
only the first 10 data points were used to obtain CZQ,DQ.
Note that for coherences for which m = 2 in Eq. (6), an
exact approach would require the use of different coupling
constants for each of the passive couplings, i.e.,
cos(pJ1,ZQ/1,DQsM)cos(pJ2,ZQ/2,DQsM) as opposed to
cos(pJZQ/DQsM)2 in the argument. However, the use of
an additional fitted parameter was not found to result
in a statistically significant improvement in the quality
of the fits for these coherences. As was mentioned previ-
ously, an additional 16-step phase cycle was introduced
into the experiment to measure the time-evolution of
ZQC in order to prevent the contamination by two-spin
order terms (in reality these are three spin order terms
of type 4HzIzSz) which have the same transformation
properties as the ZQC and result from non-ideal behavior
during the pulse sequence. This procedure however was
unable to completely eliminate the contamination. We
found that the quality of the fits for the ZQ datasets
improved in a statistically significant way on including a
sM independent offset in Eq. (6). The rates, CZQ,
tasets for 13C, 15N-labeled ubiquitin at 30 �C collected using the sequences
e double-quantum spectra for ease in visualization. (B) Representative fits
Ala46, Ca–Cb), class II (red—Ile30, Cc1–Cd1), and class III (blue—Leu50,
q. (6) are indicated by solid lines. The data points are normalized for unit
. (C) Large differences between the decay rates of ZQC and DQC indicate
Leu50, Cc–Cd1 ZQC (red) compared with the corresponding DQC (black).
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determined in this fashion were identical within error to
those obtained without use of an offset. For the coher-
ences used in the final analysis (vide infra) the offset
was determined to be �2.02% ± 1.08%. A similar analysis
for the DQ datasets revealed an offset of 0.45% ± 0.32%
(no differences in either the rates or their errors were seen
compared to fits without the offset term). Errors in the
measured CZQ,DQ and JZQ,DQ represent the random errors
obtained from experimental noise. In all, 38 sets of DQC/
ZQC pairs were analyzed after excluding overlapping res-
onances and those whose intensities could not be obtained
to >95% accuracy due to large errors in peak fitting. Rep-
resentative spectra and fits to Eq. (6) are shown in Fig. 2.

4. Results and discussion

4.1. Theoretical framework for the estimation of DC

To perform a separation of the effects of ‘‘conventional’’
relaxation from the effects of conformational exchange in
the measured DC it was necessary to estimate the effects
of the first three terms in Eq. (5). To estimate the first term
corresponding to CSA/CSA cross-correlation accurately,
estimates of the 13Cmethyl and 13Cnext shift tensors were
required. Recent solid-state NMR work by Wylie et al.
[34] on the protein GB1 revealed a significant amount of
variability in the tensor values for various sidechain 13C
positions. In the present work, we assumed that both the
13Cmethyl and 13Cnext shift tensors were axially symmetric
and their principal axes were collinear. The CSA values
were estimated using Dr ¼ r33 � r11þr22

2
, where r33 was the

most downfield shifted component of the CSA tensor.
Average values for a given 13C position for each residue
type from Wylie et al. [34] were utilized. For Leu residues
(none present in GB1) we used values from Val carbons
at corresponding branch points. A sc value of 3.5 ns was used
[26,35]. Local motion was assumed to be isotropic and the
unique order parameter for this interaction S2

ij ¼ S2
CSA was

assumed to be 0.80. Thus the CSA/CSA cross-correlation
contributions were found to be 0.591 s�1 (Ala), 0.618 s�1

(Thr), 0.233 s�1 (Val, Leu), 0.306 s�1 (Ile, Cc1–Cd1) and
0.255 s�1 (Ile, Cb–Cc2) at 600 MHz. The third term in Eq.
(5) was calculated assuming a CnextCmethyl bond-length of
1.527 Å and S2

IS ¼ 0:8 yielding a value of 0.081 s�1. Thus,
the combined effect of these two terms was small and in the
absence of conformational exchange, the largest contribu-
tion came from the second term in Eq. (5).

The contribution of the second term comes from four
different types of interactions

(i) Dipole–dipole cross-correlation involving the
CnextHmethyl and CmethylHmethyl dipolar interactions,
where Hmethyl represents a methyl proton attached
to Cmethyl.

(ii) CnextHnext and CmethylHnext dipole–dipole cross-corre-
lations where Hnext represents a proton attached to
Cnext.
(iii) CnextHmethyl, remote and CmethylHmethyl,remote dipole–di-
pole cross-correlations, where Hmethyl,remote repre-
sents a remote methyl proton.

(iv) CnextHk, remote and CmethylHk, remote dipole–dipole
cross-correlations, where Hk,remote represents a
remote non-methyl proton.

These interactions were considered separately since the
dynamic averaging due to local motion and hence S2

k;cross

in Eq. (5) was different in each case. It is to be noted that
the relevant dynamical modes affecting the difference in
the relaxation rates of the ZQ and DQ coherences involve
motion of the CnextHk and CmethylHk dipolar vectors
(due to any displacement of the position of Hk, where Hk

is a local or a remote proton) and the motion of the
CnextCmethyl bond itself.

The cross-correlation order parameter S2
k;cross for the

dipolar interactions of Cnext and Cmethyl with the same pro-
ton Hk (where Hk is either Hmethyl or Hnext), i.e., for inter-
actions of types (i) and (ii) above assuming motional
averaging about a single axis (Caxis) may be written as [36]

S2
k;cross ¼ S2

axis a0U0ð1Þ þ a1U1ð1Þ þ a2U2ð1Þ½ �;
a0 ¼ P 2ðcos hnkÞP 2ðcos hmkÞ;
a1 ¼ 3 cos hnk cos hmk sin hnk sin hmk cos unk � umkð Þ;

a2 ¼
3

4
sin2 hnk sin2 hmk cos 2unk � 2umkð Þ.

ð7Þ

The orientations of the CnextHk and CmethylHk dipolar
vectors in a fixed reference frame are given by {hnk,unk}
and {hmk,umk}, respectively. U0 (1), U1 (1) and U2 (1)
represent the limiting values of the three components of
the local motional correlation function. Eq. (7) describes
the motional averaging of the projection of the CnextHk

and CmethylHk dipolar vectors on the CnextCmethyl axis –Caxis

(z-axis of the reference frame) and assumes that this averag-
ing occurs on a timescale that is much faster (by at least one
order of magnitude) [37] than the motion of the Caxis itself
(described by the order parameter S2

axis). This condition is
always satisfied when Hk is a methyl proton due to rapid
rotations about the threefold axis (C3).

In the simplest of models, assuming restricted diffusive
motion of Hk about a single axis, the effects of any dis-
placement of Hk may be viewed as the motion of the point
of intersection between the CnextHk and CmethylHk dipolar
vectors (shown by the thick circle in Fig. 3A) in a circular
orbit within the angular limits ±c (shown in Fig. 3C). The
functions Un (1) (n = 0,1,2) in Eq. (7) are then given by
[36]

Unð1Þ ¼
sin2ðncÞ
ðncÞ2

. ð8Þ

In case of perfectly rigid bonds, i.e., no displacement of Hk,
c = 0 and U0(1) = U1(1) = U2(1) = 1 and Eq. (7) trans-
forms to [36]

S2
k;cross ¼ S2

axisða0 þ a1 þ a2Þ ¼ S2
axisP 2ðcos hnm;kÞ; ð9Þ



A B

C

Fig. 3. Dipole–dipole interactions that affect the difference in the relaxation rates of DQC and ZQC. Cross-correlation between the dipole–dipole
interactions of (A) Hmethyl with Cmethyl and Cnext, (B) Hnext with Cmethyl and Cnext. The C3 axis is parallel to the CnextCmethyl bond (C3). (C) The thick circle
denotes the intersection point between the CnextHk and CmethylHk vectors, where k = methyl, next. This point moves in a circle within the angular limits of
±c for any diffusive displacement of Hk. In the case of Hmethyl, c = p.
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where hnm,k is the angle between the CnextHk and CmethylHk

dipolar vectors (h1 or h2 in Fig. 3). In case of unrestricted
diffusion of Hk and completely disordered bond vectors,
c = ± p, we have U0 (1) = 1 and U1 (1) = U2 (1) = 0 thus
Eq. (7) transforms to [36]
S2
k;cross ¼ S2

axisP 2ðcos hnkÞP 2ðcos hmkÞ. ð10Þ

To evaluate S2
k;cross for the interactions (i) and (ii) above, we

defined the following co-ordinate system—the z-axis was
defined to be collinear with the CnextCmethyl bond (Caxis = C3)
with the CnextCmethyl and CmethylHmethyl,1 vectors lying in the
xz-plane. The coefficients in Eq. (7) were found to be
a0 = �0.22, a1 = 0.39, and a2 = 0.15. In the case, where Hk

is Hmethyl, Eq. (10) holds due to rapid rotation of the methyl
group about the CnextCmethyl (C3) axis. When Hk is Hnext,
S2

k;cross is evaluated using Eqs. (7) and (8) in the general case.
We take a more empirical approach to evaluating terms

of type (iii) and (iv) described above. For interactions of
type (iii) we assume averaging of the remote methyl proton
about its own C3 (C03—this defines the z-axis of the co-ordi-
nate frame) axis and utilize Eq. (10) replacing the order
parameter S2

axis by S2
k;remote ¼ S2

axisS
2
axis;remote. The additional

scaling represented by S2
axis;remote is included to account for

motion of the C03 axis itself in an empirical fashion and
S2

axis represents the motion experienced Cnext and Cmethyl

nuclei since the local C3 axis is collinear with the
CnextCmethyl bond and local motion has been assumed to
be isotropic in the analysis adopted here. S2

axis;remote is taken
to be 0.9 when the remote methyl proton is on the same res-
idue and 0.7 otherwise. In the case of remote non-methyl
protons, we used Eq. (9) with S2

axis replaced by
S2
k;remote ¼ S2

axisS
2
axis;remote with S2

axis;remote taking values of 0.7
or 0.9 as before and hnm,k is replaced by hnm,k,remote.
Remote protons that were more than 5 Å away from both

the Cnext and Cmethyl nuclei that constitute the ZQC and
DQC were excluded from the analysis. Formally, for
remote interactions, the rIHk and rSHk in Eq. (5) may also
be time-dependent and this would require the definition
of a radial order parameter in addition to the traditional
angular order parameters described above. However these
additional effects are expected to be minimal.

In the absence of chemical exchange the largest contri-
butions (>90%) to Eq. (5) involved dipole–dipole cross-cor-
relations involving local protons, i.e., protons connected to
Cnext or Cmethyl nuclei forming the ZQC/DQC. However
our estimates of all terms in Eq. (5) were used in the present
analysis.

4.2. Analysis of the relaxation rates

The average values and standard deviations for CDQ and
CZQ for 15N, 13C-labeled ubiquitin at 30 �C were found to
be 31.09 ± 7.44 s�1 and 35.33 ± 11.10 s�1, respectively
(shown in Table 2) and the JDQ and JDQ were found to
33.88 ± 6.02 Hz and 34.00 ± 5.77 Hz, respectively (data
not shown since these were not analyzed further). The
reproducibility of the measured values was confirmed and
the random errors determined from four independent sets
of measurements obtained over a period of 6 weeks.

Using the theoretical framework described above and uti-
lizing the cluster of 10 NMR structures of ubiquitin (PDB
reference code—1D3Z) we estimated contributions from
the first three terms in Eq. (5). In almost all of the cases the



Table 2
Measured ZQC and DQC relaxation rates in 13C, 15N-labeled ubiquitin at
30 �Ca

Coherence CDQ

(s�1)
DCDQ

(s�1)
CZQ

(s�1)
DCZQ

(s�1)
DC = CDQ–CZQ

(s�1)
DDC
(s�1)

Ile3,Cc1–Cd1 34.4 0.1 40.6 1.8 �6.3 1.8
Ile3,Cb–Cc2 38.2 0.2 43.8 1.1 �5.6 1.1
Val5,Cb–Cc2 31.8 0.9 33.7 0.7 �1.9 1.1
Thr7,Cb–Cc2 18.8 0.1 19.9 0.4 �1.1 0.4
Leu8,Cc–Cd1 23.9 0.7 19.6 <0.1 4.3 0.7
Thr9,Cb–Cc2 23.7 0.4 24.3 0.1 �0.6 0.4
Thr12,Cb–Cc2 26.4 0.6 28.5 0.9 �2.1 1.1
Ile13,Cc1–Cd1 25.4 0.1 30.5 0.1 �5.1 0.1
Ile13,Cb–Cc2 30.9 0.3 33.7 1.2 �2.8 1.2
Thr14,Cb–Cc2 25.4 0.2 26.7 0.9 �1.4 0.9
Leu15,Cc–Cd1 29.7 0.8 42.3 1.7 �12.7 1.9
Val17,Cb–Cc1 35.6 0.8 37.8 0.2 �2.2 0.8
Val17,Cb–Cc2 35.7 0.1 37.9 0.5 �2.2 0.6
Thr22,Cb–Cc2 17.3 0.2 18.3 0.4 �1.0 0.4
Ile23,Cc1–Cd1 31.9 0.4 35.2 0.5 �3.3 0.6
Ile23,Cb–Cc2 43.7 1.2 43.2 0.9 0.4 1.5
Val26,Cb–Cc1 33.9 0.1 35.5 0.1 �1.6 0.1
Val26,Cb–Cc2 27.6 0.1 28.2 0.3 �0.6 0.3
Ile30,Cc1–Cd1 41.3 0.2 47.6 0.9 �6.3 0.9
Ile30,Cb–Cc2 38.3 0.6 45.0 0.1 �6.7 0.6
Ile36,Cc1–Cd1 30.3 0.7 32.4 0.6 �2.1 1.0
Ile36,Cb–Cc2 31.2 0.1 33.8 1.2 �2.6 1.2
Leu43,Cc–Cd1 33.4 0.3 38.2 0.7 �4.8 0.7
Ile44,Cc1–Cd1 21.7 0.3 21.5 0.4 0.3 0.4
Ile44,Cb–Cc2 35.5 0.5 41.5 0.9 �6.1 1.0
Ala46,Ca–Cb 24.0 0.4 31.2 1.8 �7.2 1.9
Leu50,Cc–Cd1 35.9 2.7 53.6 5.2 �17.7 5.9
Leu50,Cc–Cd2 46.9 1.1 60.6 1.0 �13.8 1.5
Thr55,Cb–Cc2 28.9 0.3 30.0 2.1 �1.1 2.1
Leu56,Cc–Cd1 30.4 0.1 42.3 0.7 �12.0 0.7
Leu56,Cc–Cd2 44.4 0.1 67.2 2.1 �22.8 2.2
Ile61,Cc1–Cd1 33.1 0.4 33.8 0.1 �0.8 0.4
Ile61,Cb–Cc2 37.3 0.1 40.9 1.1 �3.6 1.1
Leu67,Cc–Cd1 28.2 0.1 29.9 <0.1 �1.7 0.1
Leu67,Cc–Cd2 28.4 0.1 30.2 <0.1 �1.9 0.1
Leu71,Cy–Cd1 22.4 0.4 24.2 0.6 �1.8 0.7
Leu73,Cc–Cd1 21.7 0.4 23.3 0.7 �1.6 0.8
Leu73,Cc–Cd2 21.2 1.1 21.4 0.2 �0.2 1.1

a DCZQ,DQ denote the random errors in the CZQ,DQ values. Rates
determined from time-points sM 6 28 ms (see text).

DDC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DC2

DQ þ DC2
ZQ

q
represents the errors in the DC values.
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measured DC = CDQ � CZQ could be explained without the
need to invoke the presence of slow conformational
exchange represented by the fourth term in Eq. (5), i.e.,
Rex. As previously stated, the dominant effect on DC came
from the second term in Eq. (5). The largest contribution
to this term results from dipolar interactions with Hmethyl

and Hnext namely interactions of the type (i) and (ii) men-
tioned in the theoretical framework above. The contribution
of these two types of interactions merits some detailed
attention. Taking account of the fact that there are 3 Hmethyl

and 1 Hnext (2 for ZQC/DQC involving Ile Cd1) the expected
contributions of these two effects to DCðDCdd

localÞ can be
written as

DCdd
local ¼ 2

2

5
sc

� �
l0�h
4p

� �2 c2
Hc2

C

r3
1r3

2

3S2
axisP 2 cos hnmð ÞP 2 cos hmmð Þ þ nS2

k;cross

h i
;

ð11Þ
where r1 is either rmm or rnn (Figs. 3A and B), i.e., the CH
bond-length (taken to be 1.09 Å) and r2 is either rnm or rmn

(taken to be 2.15 Å) and hnm and hmm are shown in Figs.
3A and B, and S2

k;cross is given by Eqs. (7) and (8). n = 2
for coherences involving Ile Cd1 and n = 1 for all other
cases. Using sc = 3.5 ns as suggested by Lee et al. [26,35]
(this value of sc was used by Lee and Wand to extract
the S2

axis values from 2H relaxation data and the S2
axis values

obtained by them have been utilized in the present analysis)
and representative structures from the NMR cluster, the
contribution of the first term within the brackets in Eq.
(11) to the quantity DCdd

local=S2
axis was found to be

�5.17 s�1. Note that DCdd
local=S2

axis depends on the amount
of motional restriction of the CnextHnext bond, i.e., on the
angle c, through its contribution to the second term within
brackets in Eq. (11). It is possible to estimate DCdd

local=S2
axis

using various degrees of motional restriction of the
CnextHnext bond, i.e., with different values of c.
DCdd

local=S2
axis ¼ �2:67 s�1 for completely restricted motion

of the CnextHnext bond, i.e., c = 0� with a contribution of
2.51 s�1 from second term within the brackets in Eq.
(11). For unrestricted motion (completely free diffusive mo-
tion of Hnext) of the CnextHnext bond (c = 180�) these values
are �6.90 and �1.72 s�1. For ZQC/DQC involving the Ile
Cc1–Cd1 coherence (there are two c1 protons in Ile) the val-
ues for c = 0: �0.16 and 5.02 s�1; c = 180: �8.62 and
�3.45 s�1. Thus in our single axis diffusion model, small
values of DCdd

local=S2
axis indicate restricted motion of the

CnextHnext bond since the two terms in Eq. (11) interfere
destructively being opposite in sign. Under these circum-
stances the errors caused by the empirical treatment of
the CSA–CSA cross-correlation and dipole–dipole cross-
correlations involving remote protons (interactions of types
(iii) and (iv) discussed above) may be exacerbated. In this
limit, an auto-correlated relaxation rate involving the
CnextHnext dipolar interaction, when available, is expected
to be a better reporter of local dynamics than the
cross-correlated rates measured in the present case (see
Appendix B).

We utilized the S2
axis values reported from 2H relaxation

measurements by Lee et al. [26] and the theoretical frame-
work described above to obtain the scaled difference
between the ZQ and DQ relaxation rates ðDC=S2

axisÞ involv-
ing 38 methyl groups in ubiquitin (Fig. 4). Calculated DC
values included our estimates all the terms in Eq. (5). These
values were then compared with the experimental DC=S2

axis

values to estimate the degree of motional restriction
(denoted by the angle c) of the CnextHnext bond (actually
in true mathematical terms we are determining the degree
to which the Hnext nucleus diffuses about its equilibrium
position—in physico-chemical terms this corresponds to
the motional restriction of the CnextHnext bond) using
Eqs. (7) and (8). We generated expected DC=S2

axis on a grid
of c values from 0� to 180� in 10� increments. We felt that
using a finer grid would not be justified since the estimates
of the first and third terms in Eq. (5) and contributions of
the interactions of types (iii) and (iv) to the second term are



  

Fig. 4. Experimental values of DC=S2
axis are indicated by the filled circles and calculated values by the solid lines assuming either completed restricted

(upper line, c = 0�) or a completely disordered (lower line, c = 180�) of the CnextHnext bond vector using the single axis diffusion model. S2
axis values

obtained from the 2H relaxation measurements of Lee et al. [26] have been utilized to calculate DC=S2
axis values. ZQC/DQC with exchange contributions to

the DC=S2
axis values (see text) are labeled in boldface.
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only approximate. The estimated c values are summarized
in Table 3.

For Thr residues, the estimated c values lie between 10�
and 30� representing a high degree of order of the Cb–Hb

bond vector. It is to be mentioned here that S2
axis values

for these residues are 0.83 ± 0.13 representing a high
degree of order of the methyl symmetry (C3) axis corre-
sponding to the Cb–Cc2 bond. Note that the c values and
S2

axis values report on the motion of two almost orthogonal
vectors and discrepancies between these values may be due
to the presence of complex anisotropic local motional
modes as reported by Fischer et al. [3] in the protein back-
bone and discussed for sidechains in some detail by Yang
et al. [27]. The calculated c value Thr9 seems to indicate
a marginally higher degree of order than expected from
the S2

axis value. This could be due to several reasons, includ-
ing the presence of anisotropic fast motional modes or the
presence of a slow dynamic mode that contributes a posi-
tive Rex (vide infra) to DC that increases its overall value
and leads to a smaller value of c. The latter scenario seems
more likely in the present case since Leu8 (see below) con-
tains a significant Rex contribution. A similar high degree
of order is seen for Val residues with c values between 0�
and 40� and S2

axis values (corresponding to the motion of
the CbCc1,2 bonds) given by 0.81 ± 0.23.

In considering the relaxation properties of Cc–Cd1,2

coherences in Leu residues one has to consider the effects
of strong coupling due to possible chemical shift degenera-
cy between Cc and Cd1,2 nuclei. The extent of strong cou-
pling can be described a parameter h ¼ 1

2
tan�1ð JCC

dc�dd
Þ [38],

where dc and dc are the chemical shifts of the Cc and
Cd1,2, respectively. A h value <5� (cosh > 0.99) may be con-
sidered weak coupling and a h > 25� (JCC � dc � dd) may
be considered very strong coupling. It is notable that in
the limit of very strong coupling there are no additional con-

tributions to DC values when compared with the weak-cou-
pling limit [38]. However, the following situation requires a
careful attention—consider the scenario where Cc is degen-
erate with Cd1 (downfield Cd), while Cd2 (upfield Cd) is far
enough upfield that it is in the weak-coupling limit with
respect to Cc. In such a case, when considering the Cc–
Cd1 ZQ/DQ coherence (involving the very strongly coupled
spins), we may simply consider evolution under a weak
coupling with Cd2 as represented by Eq. (6). However, since
Cc and Cd1 are strongly coupled we cannot generate a pure
Cc–Cd2 coherence without mixing in Cd1 and the dynamics
of the Cc–Cd2 coherence would be rather complex and not
accurately represented by Eq. (6). Thus, in the present
work we only consider only those Leu coherences where
the h value either <5� for both Cds or only the coherence
that involves a Cd that is strongly coupled with the corre-
sponding Cc (h > 25�). Thus, coherences corresponding to
Leu15 and Leu43 were not analyzed further. For Leu res-
idues, the S2

axis values in ubiquitin are quite low
0.25 ± 0.06 and this is reflected in the c values which lie
between 90� and 180� for the CcHc bond. The Leu73 Cc–
Cd1 bond seems to be better ordered than predicted by
the S2

axis value but the error in c is very large and the upper
and lower bounds of c in this case cover the full range of
possible c values. However, the situation is rather compli-
cated for the Ile residues with rather poor correlation
between S2

axis values of Lee et al. and the c values obtained
from the present study.

Fig. 5 shows the comparison of the c values obtained in
the present study with the S2

axis values obtained by Lee et al.
[26]. The errors in c values are generally quite large, this is a
reflection of the fact that the quantities that are directly
measured are the CDQ,ZQ values and the individual errors



Table 3
Motional restriction of the Cnext–Hnext bonda

Bond-vector
(CnextHnext)

Coherence
(Cnext–Cmethyl)

c�b S2
axis

c

Thr

Thr7,Cb–Hb Cb–Cc2 20 ± 20 0.75
Thr9,Cb–Hb Cb–Cc2 10 ± 10 0.64
Thr12,Cb–Hb Cb–Cc2 30 ± 40 0.93
Thr14,Cb–Hb Cb–Cc2 20 ± 30 0.78
Thr22,Cb–Hb Cb–Cc2 10 ± 10 0.95
Thr55,Cb–Hb Cb–Cc2 30 ± 40 0.93

Val

Val5,Cb–Hb Cb–Cc2 30 ± 30 0.88
Val17,Cb–Hb Cb–Cc1 40 ± 20 0.89
Val17,Cb–Hb Cb–Cc2 40 ± 20 0.89
Val26,Cb–Hb Cb–Cc1 20 ± 10 0.86
Val26,Cb–Hb Cb–Cc2 0 ± 10 0.99

Leu

Leu67,Cc–Hc Cc–Cd1 160 ± 20 0.30
Leu67,Cc–Hc Cc–Cd2 180 ± 10 0.29
Leu71,Cc–Hc Cc–Cd1 120 ± 40 0.29
Leu73,Cc–Hc Cc–Cd1 140 ± 40 0.19
Leu73,Cc–Hc Cc–Cd2 90 ± 90 0.17

Ile

Ile3,Cc1–Hc1 Cc1–Cd1 140 ± 40 0.75
Ile13,Cc1–Hc1 Cc1–Cd1 180 ± 10 0.55
Ile23,Cc1–Hc1 Cc1–Cd1 120 ± 40 0.51
Ile30,Cc1–Hc1 Cc1–Cd1 150 ± 30 0.77
Ile36,Cc1–Hc1 Cc1–Cd1 70 ± 20 0.58
Ile44,Cc1–Hc1 Cc1–Cd1 10 ± 20 0.31
Ile61,Cc1–Hc1 Cc1–Cd1 40 ± 10 0.56
Ile3,Cb–Hb Cb–Cc2 140 ± 40 0.98
Ile13,Cb–Hb Cb–Cc2 110 ± 40 0.56
Ile23,Cb–Hb Cb–Cc2 0 ± 10 0.95
Ile30,Cb–Hb Cb–Cc2 180 ± 10 0.93
Ile36,Cb–Hb Cb–Cc2 60 ± 40 0.83
Ile44,Cb–Hb Cb–Cc2 180 ± 10 0.71
Ile61,Cb–Hb Cb–Cc2 80 ± 40 0.95

a Coherences with Rex contributions not shown. Ala46 which has been
determined to have Rex contributions by comparison with other measure-
ments (see text) is also not shown.

b Error bounds in c calculated from the DDCS2
axis values.

c S2
axis values taken from Lee et al. [26].
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are propagated into the DC values. These errors and the
errors in S2

axis from Lee et al. are further propagated to cal-
culate DC=S2

axis values and ultimately c values. The boxed
areas display regions of different motional restriction—res-
idues with 00

6 c 6 600 are considered to be highly
ordered, 600 < c 6 1200 are considered to be partially
ordered and c > 1200 are considered to be highly disor-
dered. The corresponding classification for the S2

axis values
are S2

axis P 0:7, 0:7 > S2
axis P 0:5, and S2

axis < 0:5. Thus the
points enclosed within or near the boxed regions show
good qualitative agreement between S2

axis and c values. It
is evident from Fig. 5 that most coherences except a large
number corresponding to Ile residues (shown in blue) show
qualitative agreement between the two sets of values. It is
perceivable that some of the discrepancies may arise from
anisotropic local motion or from an empirical treatment
of interactions of type (iii) and (iv). However, extremely
large differences as seen in the following coherences—
Ile3, Cc1–Hc1; Ile30, Cc1–Hc1; Ile44, Cc1–Hc1; Ile3, Cb–
Hb; Ile30, Cb–Hb; and Ile44, Cb–Hb. For these coherences
that lie in protein core, the extremely large discrepancies
between the S2

axis and c values cannot be explained merely
by anisotropic motional effects alone and point to a failure
in our choice of motional models.

It is therefore likely that more complicated motional
models (see Appendix C) and the inclusion of the possibil-
ity of correlated motion about multiple axes may be neces-
sary to accurately analyze the measured cross-correlation
rates for residues in the tightly packed protein central core,
though simple motional models may suffice for shorter
chain amino acids and for residues that lie in the fringes
of the protein. These complex motional effects may become
critical for longer and asymmetrically branched amino
acids (Ile > Leu > Val). Also, motional correlations are
expected to be more likely in better-ordered systems and
less where there is more disorder. Restricted diffusion mod-
els may not be the only possible motional models that
could be appropriate to interpret the measured cross-corre-
lation rates. It has been shown through molecular dynam-
ics (MD) simulations that jump models with restricted
diffusion within minima that take into account transitions
between rotameric states [39] as well as motional restriction
within these states (see Appendix C) may be necessary in
certain cases. It is to be noted that these conformational
transitions may often be quite slow compared to the rota-
tional correlation time and may not affect S2

axis values (they
are thus not fast motions in the true sense and may or may
not result in slow modulation of isotropic chemical shifts
leading to Rex contributions discussed below), however
they will affect the interpretation of the cross-correlations
rates in the present case and order parameters obtained
from scalar couplings or residual dipolar coupling values
as shown by Chou et al. [40]. Evidence of rotamer averag-
ing for Ile3, Ile30, and Ile44 has been noted by Chou et al.
[40]. Further, an inspection of the recent dynamically
refined (DER—dynamic ensemble refinement) structural
ensemble of ubiquitin (PDB code—1XQQ) presented by
Lindorff-Larsen et al. [41] revealed that these three residues
exhibit a far greater amount of disorder about the v1 and
v21 angles when compared with the structures used in the
present analysis (PDB code—1D3Z). This is especially pro-
nounced in case of the Ile44 v1 angle.

In some residues such as Val17, Val26, Leu67, and
Leu73 there are two independent measurements of the
motional restriction of the same bond-vector CbHb in Val
(measured from the Cb–Cc1 and Cb–Cc2 coherences) and
CcHc in Leu (measured from Cc–Cd1 and Cc–Cd2 coher-
ences). As is evident from Table 3, the results are consistent
is all cases except for Leu73 which has an extremely large
uncertainty in the calculated c value in the case of the
CcCd1 coherence.

Three Leu residues (after excluding the ones with com-
plex dynamics as discussed above) involving the following
coherences: Leu8—Cc–Cd1; Leu50—Cc–Cd1; and Leu56—
Cc–Cd1 display extremely large absolute values of DC.



Fig. 5. Plots of the motional restriction of the CnextHnext vector represented by the c values against the motional restriction of the CnextCmethyl (C3) axis
represented by the S2

axis values of Lee et al. [26]. Thr (black), Val (red), Leu (green), and Ile (blue) residues are depicted. Smaller circles are used for Ile
residues for visual convenience only. The solid lines enclose the region corresponding to 00

6 c 6 600; 0:7 6 S2
axis (signifying a high degree of motional

restriction), the dashed lines enclose the region corresponding to 600 < c 6 1200; 0:7 > S2
axis P 0:5 (signifying intermediate motional restriction) and the

dotted lines enclose the region corresponding to 1200 < c; 0:5 > S2
axis (signifying a limited amount of motional restriction or a high degree of disorder). The

experimental points lying within (or close to) the boxed regions denote qualitative agreement between the c and the S2
axis values. Errors in c values are

obtained by simple propagation of the measured CZQ,DQ errors and the errors in S2
axis are from Lee et al. [26]. The Leu73 Cc–Cd1 coherence, which has an

extremely large error covering the whole range of c values is not shown.

 

 

Fig. 6. Comparison of those residues that display slow ls–ms timescale
motion for sidechains (red, present study) and those with backbone v
values less than 0.5 (blue, see text) from Majumdar and Ghose [21]. The
residues with the largest effects are clustered in the same region indicating
that they may all be affected by the same (yet undetermined) motional
mode.
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These values may be accounted for by the inclusion of
exchange contributions resulting from ls–ms timescale
motion, i.e., inclusion of an Rex term in Eq. (5). These res-
idues belong in regions that show significant exchange con-
tributions in the relaxation of ZQC and DQC involving
both backbone [21] and sidechain [23] nuclei. In fact, a
recent study of the relaxation properties of ZQC and
DQC involving 13Ca and 13Cb nuclei in ubiquitin revealed
that the largest contribution from exchange processes
occurred in Leu50 and Leu56 [23]. In the present case,
for Leu50 and Leu56, the modulation of the isotropic
chemical shifts for the Cc and Cd2 nuclei are anti-correlated
(an upfield shift in one and a downfield shift in the other)
leading to a negative value of the Rex term (fourth term
in Eq. (5)) and a negative contribution towards DC. On
the other hand, for the Cc–Cd1 coherence in Leu8, the shifts
are correlated (downfield or upfield shifts for both nuclei)
leading to a positive Rex contribution. For the only Ala res-
idue we could analyze, namely Ala46, we found that the DC
ðDC=S2

axisÞ value could be explained wholly by the presence
of motion on the ps–ns timescale. The results of our anal-
ysis indicated that the motional restriction of the Ca–Ha

bond was completely unrestricted (c = 180�). This contra-
dicts previous results on fractionally 13C-labeled ubiquitin
[42] which showed that the S2 value for the Ca–Ha bond
was 0.81. It is therefore likely that an elevated absolute val-
ue of DC may be the result of a contribution from confor-
mational exchange (negative contribution of Rex and anti-
correlated shift changes). This residue lies in a region which
has been previously shown to display slow dynamics (nota-
bly Phe45) [21,23]. This effect may also contribute to the
discrepancy seen in Ile44, above. It should be noted that
even though a large majority of DC=S2

axis values described
above could be completely described without the need to
include a Rex term in Eq. (5), however the possibility that
some of these rates may contain exchange contributions,
may not be completely eliminated. Indeed, the effects of
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conformational exchange can have contributions to Eq. (5)
that are opposite in sign to the contributions of the effects
of fast motions. The most efficient method to quantitatively
measure the presence of Rex terms is to perform several
experiments using multiple refocusing of the ZQC and
the DQC terms with different inter-pulse spacing as pro-
posed by Dittmer and Bodenhausen [29]. However, simple
CPMG-type experiments for multiple-quantum coherences
have been shown to fail and more elaborate multi-pulse
schemes have to be employed [43]. In case of protein side-
chains, an added level of complexity is the necessity to use
multi-pulse sequences that employ shaped pulses for selec-
tive refocusing. We are, through simulations, investigating
the best possible multi-pulse scheme to accurately measure
Rex terms in sidechain ZQC/DQC relaxation.

Finally, we decided to compare the residues (Leu8,
Leu50, and Leu56) that undergo slow dynamics in side-
chain regions (confirmed from the present study) with
those that were shown to display motion on similar time-
scales in the backbone from our previous studies. We had
defined a quantity v that was a measure of the amount
and extent (number of bonds over which the DQ or ZQ
were generated) of correlated motion on the ls–ms time-
scale in the protein backbone [21]. This quantity was 1
for those residues that were rigid on the slow timescale
and 0 for the residue that displayed the largest amount of
motion on this timescale. The residues with v values <0.5
(Glu24, Asn25, Glu51, and Asp52) from Majumdar and
Ghose [21] (shown in blue) are displayed in Fig. 6 along
with Leu8, Leu50, and Leu56 where motion on the slow
timescales was demonstrated by the present study (shown
in red). A large majority of these residues lie in the same
region and are probably affected by the same motional
mode. The exact nature of this mode remains to be ascer-
tained. Leu8 lies on the turn between the first and second
b-strand in a region that has been shown to display slow
motion in the protein sidechain [23].

Since our estimates of the motional restriction of the
CnextHnext vector depends on extracting the effects of the
cross-correlation between the dipolar interactions between
the CnextHnext and CmethylHnext dipoles while relying on esti-
mates of the other effects contributing to DC, knowledge of
the exact nature of the CSA tensors of 13Cnext and 13Cmethyl

nuclei would go far to improve the accuracy of our results.
Availability of the principal values of the CSA tensor from
solid-state NMR measurements [34] and the orientations
from ab inito calculations [44] would improve the accuracy
of these values. Accurate estimates of dipolar interactions
with remote protons are also required.

The interpretation of cross-correlation effects (especially
in sidechains) in terms of motional models is often more
challenging in multiple-quantum coherences than in sin-
gle-quantum coherence since a larger number of interac-
tions and hence a larger number of motional modes are
involved. As discussed above, the single axis diffusion mod-
el (requiring a single parameter c to describe the motion)
proves inadequate for longer chain asymmetrically
branched amino acids such as Ile in the tightly packed cen-
tral protein core. More complex motional models including
the possibility of correlation between various motional
modes are required to adequately interpret the DC values
for these residues (see Appendix C). Such analyses require
a larger number of parameters, a minimum of three for cor-
related two-axis diffusion, and hence a larger number of
measurements with higher precision than in the present
case. Further, a decoupling of the motions of the
CnextCmethyl (C3) axis and the CnextHnext bond vector has
been assumed in deriving Eq. (5) and utilized in the subse-
quent analysis for the single-axis diffusion model. This
assumption may also not be generally valid except in cases
with very low S2

axis values. The choice of physically reason-
able motional models and the nature of correlation
between various motional modes could in principle be
obtained from an analysis of MD trajectories using either
improved implicit [45] or explicit solvent models.
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Appendix A. The secular approximation

The relaxation of the CnextCmethyl DQC and ZQC is best
described in the context of a 4-spin system involving two
protons H1 and H2 which may be either remote or local.
The various cross-correlated interactions that are involved
in the evolution of the coherences in question may be clas-
sified into several different classes.

(i) Dipole–dipole cross-correlation of between the CiHj

and CkHj dipolar interactions with {i, k = methyl,
next; i „ k} and {j = 1,2}, i.e., dipolar interactions
with the same proton. This is a secular interaction
(in either the ZQ or the DQ subspace) and leads to
differential relaxation between the ZQC and DQC.
This term is not affected by proton inversion or pro-
ton decoupling.

(ii) Dipole–dipole cross-correlation between the CiHj and
CiHk dipolar interactions with {i = methyl, next} and
{j,k = 1,2; j „ k}, i.e., dipole–dipole cross-correlation
with the same carbon. This is a non-secular interaction
and leads to the creation of IþSþ ! 4IþSþHj

zH
k
z and
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I�S� ! 4I�S�Hj
zH

k
z . This interaction is also not aver-

aged out by proton inversion or decoupling.
(iii) Dipole–dipole cross-correlation of between the CiHj

and CkHl dipolar interactions with {i,k = methyl,
next; i „ k} and {j, l = 1,2; j „ l}. This is a non-secular

interaction and leads to the creation of
IþSþ ! 4IþSþHj

zH
l
z and I�S� ! 4I�S�Hj

zH
k
z . This

interaction is also not averaged out by proton inver-
sion or decoupling.

(iv) CSA-dipole cross-correlation between the Ci CSA and
the CjHk dipolar interaction {i, j = methyl, next} and
{k = 1,2}. This is a non-secular interaction and leads
to the creation of IþSþ ! 2IþSþHk

z and
I�S� ! 2I�S�Hk

z . This interaction is averaged out by
proton inversion or decoupling (as in the pulse
sequence shown in Fig. 1).

(v) CSA–CSA cross-correlation between the CSAs of Ci

and Cj {i, j = methyl, next; i „ j}. This is a secular inter-
action and is not averaged out in the pulse sequence of
Fig. 1.

(vi) Cross-correlation between the isotropic chemical shifts
of Ci and Cj {i, j = methyl, next; i „ j} due to chemical
exchange. This is a secular interaction and not aver-
aged out in the pulse sequence of Fig. 1.

Thus, the secular interactions represented by (i), (v), and
(vi) appear in Eq. (5) (the Ci–Cj cross-relaxation is also secu-
lar and appears in Eq. (5)), while the non-secular interactions,
(ii) and (iii) lead to multi-exponential relaxation of the DQC/
ZQC at long mixing times. The non-secular interaction (iv) is
averaged out by the pulse sequence shown in Fig. 1.

The evolution of the spin-system may be best studied in
the subspace spanned by the four individual lines (doublet
of doublets) of the ISH1H2 (AMXX 0) system represented
by the four single transition operators BDQ ¼ f2IþSþ
H1

aH2
a; 2IþSþH1

aH2
b; 2IþSþH1

bH2
a; 2IþSþH1

bH2
bg in the DQ

manifold with corresponding operators in the ZQ manifold.
Note, that formally, when one of the protons is a methyl pro-
ton in a fully protonated system, one needs to consider an
AMXX03 system. However, the simplified treatment provid-
ed here should suffice in the present context. Let us first
consider the case where both H1 and H2 are local protons
with J IH1 ¼ J SH2 ¼ 1J CH and J IH2 ¼ J SH1 ¼ 2J CH � 0.
Evolution, the DQ manifold is given by [5]

dBþþ
dt
¼ �CþþBþþ ðA:1Þ

and the Liouvillian C++ is represented by
Cþþ ¼

ipJþþ þ RDQaa þ Rav
RiiþRai�Ria�Raa

4
Rii�R

RiiþRai�Ria�Raa
4

ipJþ� þ RDQab þ Rav
Rii�R

Rii�RaiþRia�Raa
4

Rii�Rai�RiaþRaa
4

�ipJþ� þ
Rii�Rai�RiaþRaa

4
Rii�RaiþRia�Raa

4
RiiþR

0
BBB@
RDQij
i; j ¼ a; b are the autorelaxation rates of the four

lines of the DQ spectrum. Rii, Ria, Rai, and Raa are the
relaxation rates of the 2IxSx, 4IxSxH

1
z , 4IxSxH

2
z and

8IxSxH
1
z H 2

z coherences, respectively; Rav ¼ RiiþRiaþRaiþRaa
4

and
J++ � 21JCH. However, J+� � 0 making the central two
lines overlap violating the secular approximation. However,
the off-diagonal elements under consideration in Eq. A.2

ðCþþÞ2;3 ¼ ðCþþÞ3;2 ¼
Rii � Ria � Rai þ Raa

4

� Rii � ðRii þ R1;HÞ � ðRii þ R1;HÞ þ ðRii þ 2R1;HÞ
4

� 0 ðA:3Þ

R1,H is the proton homonuclear spin–lattice relaxation. The
off-diagonal elements (C++)i,j = (C++)j,i {ij = 12, 14, 13, 24,
34} may also be neglected if the following condition holds
8p1JCH� |R1,H|, which is true for small and medium-sized
proteins. Thus the decay of the DQC may be considered to
be mono-exponential with the relevant rate (CDQ) given by
the sum of the diagonal elements of the dissipative part of
C++ in Eq. (A.2).

However, for interactions involving remote protons,
with no resolved scalar couplings to either the I or the S

spins, both J++ and J+� are zero and all four lines of the
DQ spectrum overlap, violating the secular approximation.

For the two central lines, the same arguments as above
can be invoked. However for the outer lines, the magnitude
of the largest of the relevant diagonal elements is

R1;H

2
and

this leads to multi-exponential decay at long mixing times.
Similar analyses apply for the ZQ manifold. Fortunately,
as pointed out in the text, remote dipolar interactions do
not play a major role in the relaxation of DQC and
ZQC. However, care has to be taken in analyzing the relax-
ation of DQC and ZQC at very long mixing times.

Appendix B. Relative sensitivities of auto- and cross-

correlated order parameters involving methyl groups

It is of interest to investigate the relative sensitivities of
the quantity S2

cross;eff ¼ ½3S2
axisP 2ðcos 2hnmÞP 2ðcos 2hmmÞþ

nS2
k;cross� (assuming S2

axis ¼ 1) which may be considered an
effective dipole–dipole cross-correlated order-parameter
(‘‘effective’’, since it involves two different cross-correlation
effects—(i) and (ii) as discussed in the text) with an auto-
correlated order-parameter for the CnextHnext dipolar inter-
action ðS2

next;autoÞ, with the degree of motion about the
CnextCmethyl axis, i.e., with c. We have assumed that the
only motion involved is the single-axis diffusion motion
aiþRia�Raa
4

Rii�Rai�RiaþRaa
4

ai�RiaþRaa
4

Rii�RaiþRia�Raa
4

RDQba þ Rav
RiiþRai�Ria�Raa

4

ai�Ria�Raa
4

�ipJþþ þ RDQbb þ Rav

1
CCCA ðA:2Þ
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of Hnext and there is no anisotropic motion that affects the
CnextHmethyl and CnextHnext dipolar interactions differently.
Analysis of Fig. B1 reveals that S2

next;auto shows a rapid
decline with increasing mobility until a value of approxi-
mately 90� is reached for c and 0.25 for S2

next;auto (followed
by a slower decline to its limiting value of 0.11 for
c = 180�). S2

cross;eff however, continues to be sensitive to
motion for the full range of c. It is evident that S2

next;auto is
more sensitive to dynamics for smaller values of c, i.e., less
motion. Further, S2

next;auto and S2
cross;eff seem to correlate

almost linearly until a value of approximately �0.7 for
S2

cross;eff (corresponding to a c value of approximately
90�—Fig. B2) followed by a significant deviation from lin-
earity (when the S2

next;auto becomes relatively less responsive
to motion). Thus, auto-correlated relaxation measurements
involving the measurement of the dipolar relaxation of the
CnextHnext bond vectors would be less efficient in distin-
guishing between moderate amount of motion (c � 90�)
and complete disorder (c � 180�) than the corresponding
measurements of S2

cross;eff . Thus even in the absence of
anisotropic motion simple geometric considerations make
Fig. B1. Plots of S2
next;auto (dotted line), S2

cross;eff for all coherences except
Ile, Cc1–Cd1 (solid line) and S2

cross;eff for Ile Cc1–Cd1 coherences (dashed
line).

Fig. B2. Correlation between S2
cross;eff for all coherences except Ile, Cc1–Cd1

(solid line) and for Cc1–Cd1 coherences (dashed line) against S2
next;auto.
the sensitivities of different measurements of the same
motion be different depending on the extent of the motion
being probed.

Appendix C. Effect of more complicated motional models on

DCdd
local=S2

axis values

It has been mentioned in the main text that the simple
single axis diffusion model (Model 1) is inappropriate for
several residues in the protein core. Some other models that
may be considered while analyzing the relaxation rates are
discussed below.

C.1. Model 2—correlated motion about multiple axes

Let us consider, for example, the Ile CbHb bond and
assume that it undergoes restricted rotation about both the
CbCc2 as well as the CbCc1 axes. This may be considered to
be the diffusive motion of the point of intersection between
the CnextHk and CmethylHk dipolar vectors on the surface of
a sphere rather than in a circular orbit as shown in Fig. 5c
in the main text. DCdd

local=S2
axis in this case can be calculated

using expressions provided by Daragan and Mayo [47]

DCdd
local

S2
axis

¼ 2
2

5
sC

� �
l0�h
4p

� �2 c2
Hc2

C

r3
1r3

2

½0:32� 0:70ðDc1Þ
2

� 0:89ðDc2Þ
2 þ 0:84c12Dc1Dc2 � 0:66�; ðC:1Þ

where Dc1 and Dc2 represent the root mean square deviation
about each axis and c12 represents the correlation coeffficient
for the two motional modes. For perfect correlation for the
diffusion about the two axes, c12 = 1 and for perfect anti-cor-
relation, c12 = �1. If the two motional modes are indepen-
dent of each other then, c12 = 0. The variation of
DCdd

local=S2
axis with Dc1 and Dc2 is plotted in Fig. C1.

C.2. Model 3—jumps between three non-equivalent sites

It has been noted that for buried sidechains, a valid
motional model consists of jumps between three conforma-
tional states denoted by v1 = �60� (gauche�), v1 = 180�
(anti) and v1 = +60� (gauche+) states. In the simplest of
jump models, transitions between gauche+ and gauche�
are disallowed and anti fi gauche+ and anti fi gauche�
transitions occur with equal probability. In such a case,
the DCdd

local=S2
axis may be written using expressions provided

by London and Avitable [48] and Daragan and Mayo [36]

DCdd
local

S2
axis

¼ 2
2

5
sC

� �
l0�h
4p

� �2 c2
Hc2

C

r3
1r3

2

	 �0:22þ 0:39 P þ ð1� P Þ cos
2p
3

� �	 
2
"

þ 0:15 P þ ð1� P Þ cos
4p
3

� �	 
2

� 0:66

#
;

ðC:2Þ



Fig. C1. Contour plots of DCdd
local=S2

axis against Dc1 and Dc2 values for uncorrelated (c12 = 0, black), perfectly correlated (c12 = 1, red) and perfectly anti-
correlated (c12 = �1, blue) motion for the two-axis motion model (Model 2).
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where P is the probability of finding the system in the
anti position (or its fractional occupancy). The
DCdd

local=S2
axis values are plotted against P in Fig. C2.

The situation can be even more dramatic in the case
where the anti fi gauche+ and anti fi gauche� do not
occur with equal probability. This is a more likely scenar-
io in real proteins, especially in buried sidechains, the
asymmetric steric environment making the populations
of the gauche+ or the gauche� unequal, see for example
Chou et al. [40].

C.3. Model 4—conformational jumps coupled between three

non-equivalent sites coupled with restricted diffusion about

each site

Assuming the jump model described above and in addi-
tion allowing the v1 to deviate by an amount Dv from its
mean position (the deviation is assumed to be the same
for the three sites and to occur on a timescale much faster
than the conformational jumps) we obtain an expression
for DCdd

local=S2
axis following Daragan and Mayo [36]

DCdd
local

S2
axis

¼ 2
2

5
sC

� �
l0�h
4p

� �2 c2
Hc2

C

r3
1r3

2

	 �0:22þ0:39 P þð1�P Þcos
2p
3

� �	 
2
"

þ0:15 P þð1�PÞcos
4p
3

� �	 
2

�1:98 Dcð Þ2�0:66

#
.

ðC:3Þ
This model represents transitions within a triple well with
equal widths about the three minima as opposed to zero
well widths in model 3 described above. Again, the situa-
tion is much more complicated in real systems which are
expected to involve transitions within a triple well with dif-
ferent widths about the three minima. The variation of
DCdd

local=S2
axis with P and Dv is shown in Fig. C3. Note that

in calculating DCdd
local=S2

axis for all models discussed (1–4),
unrestricted single axis diffusion of the methyl group has
been assumed.

Recall that the estimated value of DCdd
local=S2

axis for unre-
stricted single-axis diffusive motion was calculated to be
�6.90 s�1 (c = 180�, Model 1—see main text). A larger val-
ue absolute value (�7.89 s�1) is obtained for a much small-
er degree of motion (Dc1 = 30� and Dc2 = 30�) when the
motions about each of the two axes are perfectly anti-cor-
related. The corresponding values for positively correlated
and uncorrelated motion are �4.28 and �6.08 s�1. Thus,
the presence of correlated multiple-axis diffusion (Model
2) produces results more consistent with that expected from
the S2

axis values (see main text). For a jump model (Model
3), a DCdd

local=S2
axis value of �6.90 s�1 is reproduced, for

example, by a 27% occupancy of the anti-state. For a
three-site jump model with additional motion about the
three sites (Model 4) a DCdd

local=S2
axis value of �6.90 s � 1 is

reproduced, for example, by a 10% occupancy of the
anti-site with an additional motional amplitude of 15�
about the gauche+/� and anti-sites. Thus, the need to

invoke larger amounts of motion to obtain a particular

DCdd
local=S2

axis value decreases as the motional model becomes



Fig. C2. Plot of DCdd
local=S2

axis against P, the occupancy of the anti site for the three-site jump model (Model 3).

Fig. C3. Contour plot of the variation of DCdd
local=S2

axis with P and Dv values for the three-site jump with additional restricted diffusion (Model 4).
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more complex. The appropriateness of a motional model
cannot be determined in the absence of other measure-
ments or molecular dynamics simulations.
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